### Nothing new here

So it seems science has beaten us to the punch once again. Remember last week’s optimistic story on how you can make better use of your (measurement) time? Turns out it has been done (at least once) before. The year was 1993, the authors were M. Steinhart and J. Pleštil, and they did the same from a different perspective [1]. Credit where credit is due, their yet un-cited paper contains a good study of measurement stability and its effects on inferred information, and indeed has the equation for effective time-expenditure available (though written up in a confusing way). So all sadness on our side aside (as there is now no short-sweet-and-quick publication possible on this), please use your time wisely and cite that 1993 paper as it deserves. Do not let good methods like this be covered by years of dust. To give you some more ammunition for your citation-gun, here is a good paper detailing dead-time correction, and how Poisson statistics fail when these corrections are applied [2]. I found that I should not blindly square-root my photons (real and imaginary), but that I should use the equations they provided where applicable. If you have a Pilatus detector, there is no reason to sweat much, as this correction is only applied in the very extreme count-rate regions [3]. As always: let us know what you think and leave a comment! [1] STEINHART, M., & Plestil, J. (1993). Possible Improvements in the Precision and Accuracy of Small-Angle X-Ray-Scattering Measurements. Journal Of Applied Crystallography, 26, 591–601. [2] Laundy, D., & Collins, S. (2003). Counting statistics of X-ray detectors at high counting rates. J. Synchrotron Rad (2003). 10, 214-218 [doi:10.1107/S0909049503002668], 1–5. International Union of Crystallography. doi:10.1107/S0909049503002668 [3] Kraft, P., Bergamaschi, A., Broennimann, C., Dinapoli, R., Eikenberry, E. F., Henrich, B., Johnson, I., et al. (2009). Performance of single-photon-counting PILATUS detector modules. Journal Of Synchrotron Radiation, 16, 368–375. doi:10.1107/S0909049509009911