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After consideration of the applicability of classical methods, a novel analysis

method for the characterization of fibre void structures is presented, capable of

fitting the entire anisotropic two-dimensional scattering pattern to a model of

perfectly aligned, polydisperse ellipsoids. It is tested for validity against the

computed scattering pattern for a simulated nanostructure, after which it is used

to fit the scattering from the void structure of commercially available heat-

treated poly(p-phenylene terephtalamide) fibre and its as-spun precursor fibre.

The application shows a reasonable fit and results in size distributions for both

the lengths and the widths of the ellipsoidal voids. Improvements to the analysis

methods are compared, consisting of the introduction of an orientation

distribution for the nano-ellipsoids, and the addition of large scatterers to

account for the effect of fibrillar scattering on the scattering pattern. The fit to

the scattering pattern of as-spun aramid fibre is improved by the introduction of

the large scatterers, while the fit to the scattering pattern obtained from the heat-

treated fibre improves when an orientation distribution is taken into account. It

is concluded that, as a result of the heat treatment, the average width and length

of the scatterers increase.

1. Introduction

Aramid fibres are an example of a high-performance polymer

material that is used in many applications. The fibres are spun

from a liquid crystalline solution of poly(p-phenylene

terephtalamide) (PPTA) in sulfuric acid (Tanner et al., 1989).

In this spinning process, the liquid crystalline solution is forced

through a spinning head which contains small spinning holes,

each producing its own jet of spinning solution (Weyland,

1980). After traversing a small air gap, the polymer jets enter a

coagulation bath in which the polymer undergoes a phase

transition due to solvent exchange and changes in tempera-

ture. Here, each jet solidifies as a filament, and thus the fibre (a

collection of filaments, also known as a yarn) is formed.

Structure formation, therefore, mainly occurs in the air gap

and coagulation bath (Northolt & Sikkema, 1991). After

several washing and drying steps following the coagulation

procedure, the fibre (essentially a bundle of filaments) is then

ready for immediate use or can be subjected to heat-treatment

and stretching steps, which affect the final properties of the

material.

The structure of this material can be subdivided into several

structural levels. One filament of material is approximately

12 mm in diameter. The filaments may exhibit an internal core–

shell structure, where the structure in the core of the filament

is significantly different from the structure in the shell of the

material (Davies et al., 2008; Panar et al., 1983; Morgan et al.,

1983; Horio et al., 1984). Inside this filament we find several

levels of fibrillar structure (Morgan et al., 1983; Northolt &

Sikkema, 1991; Jiang et al., 1993; Sawyer et al., 1993), with each

fibril composed of connected crystallites (Morgan et al., 1983).

The crystallites are monoclinic with unit-cell angles of 90�. The

crystallite size is approximately 50 � 50 � 200 Å (Northolt &

Sikkema, 1991; Northolt & van Aartsen, 1973; Jackson et al.,

1994) and the crystal density is 1.48 g cm�3 (Northolt & Stuut,

1978; Yabuki et al., 1976). The material in the fibres is highly

crystalline, as no amorphous halo is observed in the diffraction

pattern (Northolt & Sikkema, 1991; Panar et al., 1983).

Furthermore, the crystallites are radially aligned in the sample

to a certain extent, with the crystallographic b axes pointing

towards the centre of the material (Riekel et al., 1997).

In addition to this structure there is considerable evidence

for the presence of a nanoporous structure in the filaments

(Mooney & MacElroy, 2004; Northolt & Sikkema, 1991; Jiang

et al., 1993; Aerts, 1991; Saijo et al., 1994). Firstly, there is the

difference between the crystalline density of PPTA

(1.48 g cm�3) and the macroscopic density of the material

(which ranges from 1.45 to 1.47, depending on the production

process) (Jiang et al., 1993; Northolt & Sikkema, 1991; Chae &

Kumar, 2006). The absence of an amorphous diffraction signal
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indicates that little or no amorphous PPTA is present, so that

the reduced density is likely to be due to about 5 vol.% of

voids. Secondly, direct observations of a porous structure have

been obtained through transmission electron microscopy by

(amongst others) Dobb et al. (1979). In other investigations

the moisture uptake in the filaments is analysed. The moisture

is partially transported through and stored in a void structure

(Saijo et al., 1994; Mooney & MacElroy, 2004). Finally, the

presence of a strong small-angle X-ray scattering (SAXS)

signal strongly supports the presence of voids, especially since

it is dependent on the moisture content (Dobb et al., 1979;

Saijo et al., 1994). The void structure appears analogous to that

found in carbon fibres (Dobb et al., 1977), although it exhibits

a lower aspect ratio (Northolt & Sikkema, 1991). An alter-

native explanation for the existence of the SAXS signal is that

this signal could also originate from an amorphous phase

instead of a void structure (Ran et al., 2001; Grubb et al., 1991).

Ran et al. (2001) reached this conclusion partially since they

did not observe a change in the SAXS pattern when subjecting

PPTA fibres to moisture. In view of the investigations referred

to above, it is at present commonly accepted that a void system

is present in the fibres.

The characteristics of the nanostructure are strongly

correlated with the physical properties of the material (Kenig,

1987; Picken et al., 1992; Rao et al., 2001a). Investigations using

crystallography and tensile testing have shown that the

orientation of the yarn is directly related to the dynamic

compliance (inverse of the sonic modulus) (Northolt &

Sikkema, 1991). In the same (review) article, it is also argued

that the strength of the aramid fibre is governed by the effect

of inhomogeneities and impurities. Most clearly, many prop-

erties of the fibre are affected by heat-treatment procedures

(Jackson et al., 1994; Rao et al., 2001b).

SAXS is an ideal tool for the study of the nanoporous

structure in these fibres. Practically, however, the analysis of

the scattering data is rather complex. Complicating factors for

this type of sample are the polydispersity in size, shape and

orientation of the scatterers, resulting in a smoothly decaying,

anisotropic scattering pattern (Dobb et al., 1979). Previous

analysis methods have focused on limiting the analysis to

regions of the scattering patterns to obtain physically relevant

parameters (Perret & Ruland, 1970; Grubb et al., 1991).

Whilst many data are left unused when analysing only a

small segment of the data, few analysis techniques exist that

are capable of analysing the full two-dimensional scattering

pattern to use the remaining data without bias. Of note is the

two-dimensional analysis method by Helfer et al. (2005), who

simulated the scattering pattern from imperfectly aligned

monodisperse cylindrical scatterers with finite length, oriented

according to a Maier–Saupe orientation distribution. Addi-

tionally, Stribeck (2001) uses two-dimensional chord distri-

bution functions (a form of the interface distribution function,

adapted to study highly anisotropic materials) to visualize the

structural parameters extracted from the scattering patterns in

real space.

This paper focuses on the methodology development for the

analysis of the full two-dimensional scattering patterns

obtained from aramid fibres. Its merit is tested in relation to

the already available methods, as well as to simulations. Lastly,

its applicability is shown when applied to a commercial aramid

fibre and its precursor.

2. Experimental

2.1. Sample preparation

Two samples are considered, one so-called ‘as-spun’ mate-

rial that has not undergone a tensioned heat-treatment

procedure, and the commercially available aramid fibre

Twaron 1000. The as-spun material can be viewed as a

precursor to the commercially available fibre. Both samples

consist of a bundle of PPTA filaments and were obtained from

Teijin Aramid BV. The samples did not contain spin finish. The

samples are mounted on rectangular frames of 13 � 18 mm in

size, similar to the method described by Hermans et al. (1959).

The frames hold an average of about 1000 filaments per mm.

All samples were prepared at least one week before the

synchrotron SAXS measurements, and they were dried in

vacuum before transportation in a box kept dry with silica gel.

Upon arrival at the synchrotron facility, the samples were

stored in vacuum to prevent the uptake of moisture.

2.2. Beamline details

Synchrotron experiments were performed at the I711

beamline at the MAX-lab synchrotron in Lund, Sweden. The

collimation was a square collimation, 0.5 � 0.5 mm in size. The

wavelength used was 1.235 Å, with a sample-to-detector

distance of 1.449 m. The scattering patterns were recorded

using a Marresearch 165 CCD detector, quantized into 20482

pixels. Transmission values (where applicable) were deter-

mined using a beamstop-mounted detector.

2.3. Determination of coefficient of variance using a

laboratory source

In order to determine the coefficient of variance for some

model fits, five frames of Twaron 1000 and five frames of as-

spun Twaron were measured for 1 h on the Risø DTU SAXS

instrument. This instrument consists of a rotating-anode

generator running with a copper anode producing radiation

with a wavelength of 1.5418 Å (Cu K�). The beam is colli-

mated to a diameter of 1 mm using pinholes. The sample-to-

detector distance was set to 1.45 m. The detector is a Gabriel-

type wire detector, quantized into 10242 pixels. Transmission

values were determined by detecting fluorescence orthogonal

to the beam of an iron foil which can be placed in front of the

beamstop. The coefficients of variance were calculated by

comparing the fitting parameters obtained from analysis of the

measured data from each frame. The coefficient of variance

(CV) is defined as the standard deviation normalized to the mean.

3. Classical analyses

The literature provides several analysis methods that can be

applied for determining the orientation of scatterers in the
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sample and for the determination of the average size para-

meters of the scatterers. We will refer to two methods that

have classically been used to determine the orientation para-

meters. These two methods are the invariant-based method

and the ‘Ruland streak’ method. For the determination of size

parameters several options are available, namely the Guinier,

Debye–Bueche and Porod methods.

3.1. Orientation analysis through the Effler invariant method

An invariant-based orientation parameter determination

for samples with fibre symmetry has been developed by Effler

& Fellers (1992). They noted that the invariant for anisotropic

scattering patterns has a different meaning than for isotropic

samples. For anisotropic samples, the (direction-dependent)

invariant Q , defined as

Q ¼ R1
0

q2Iðq;  Þ dq; ð1Þ

is a measure of the square of the average electron-density

distribution in the direction  , where q is the momentum

transfer, defined as q ¼ ð4�=�Þ sin � with � the wavelength of

the incident radiation and 2� the scattering angle. In the

numerical implementation of the integration in this report, no

extrapolation to q ¼ 0 and q ¼ 1 is performed for this

determination. Analysis of the variation of Q as a function of

 using equation (1) results in the expression of the orienta-

tion parameter as hsin2  i or the Hermans orientation para-

meter FH through FH ¼ 2hsin2  i � 1:

hsin2  i ¼ FH þ 1

2
¼

R �=2

0 Q sin2  d R �=2

0 Q d 
: ð2Þ

This equation can be numerically evaluated using a sufficiently

small step size. For a perfectly oriented scatterer, hsin2  i is 1,

and for randomly oriented scatterers this is 0.5 (corresponding

to an FH of 1 and 0, respectively).

3.2. Orientation analysis through the Ruland streak method

The degree of alignment of scatterers can also be obtained

using the so-called Ruland streak method. This method was

proposed by Perret & Ruland (1969). Wang et al. (1993) have

applied the method to as-spun PPTA fibres that have been

subjected to critical-point carbon dioxide drying. The method

assumes well oriented scatterers with a high aspect ratio, for

example needle-like voids as found in carbon fibres. The main

scattering contribution is found along the normal of the main

axis of the scatterer. A single scatterer will produce a scat-

tering streak along this normal. A rotation of the main axis of

the scatterer in the plane of the detector will see a similar

rotation of the streak. Thus, the distribution GN of the normals

of the scatterers in the detector plane can be directly

measured.

The method consists of determining the integral breadths of

azimuthal regions (i.e. domains at constant q). The integral

breadths are defined as

BobsðqÞ ¼
R  maxþ�=2

 max��=2 Iðq;  Þ d 

Iðq;  maxÞ
: ð3Þ

The error of this computation is defined as

"b ¼
�P
 

Iðq;  Þ
�1=2

þ ½Iðq;  maxÞ�1=2 ð4Þ

where Bobs is the observed integral breadth of the azimuthal

profile,  max is the angle at which the peak maximum is found

and Iðq;  Þ is the background-corrected intensity. Thus, the

integral breadth provides a means of quantifying the width of

the azimuthal profile, irrespective of the peak shape. It

remains sensitive to noise, however, which for regions of low

intensity can increase the integral breadth.

It was noted by Perret & Ruland (1969) that this observed

integral breadth is equal to the breadth of the distribution of

the normals of the scatterers and should thus be independent

of q. This is true for infinitely long scatterers. For scatterers

with finite length, there is an additional contribution, present

mainly at low q, originating from the length L of the scatterers.

This contribution is dependent on q. For a Gaussian orienta-

tion distribution of the axes of the scatterers, the observed

integral breadth Bobs is related to q, L and the integral breadth

of the normals of the scatterers B by

B2
obs ¼ B2

 þ
4�2

L2q2
: ð5Þ

This holds for relatively narrow orientation distributions. For a

Lorentzian (Cauchy-like) orientation distribution of the axes,

this becomes

Bobs ¼ B þ
2�

Lq
: ð6Þ

Both equations are applied when analysing the experimental

data and are fitted to the Bobs versus q data. The equation that

describes best the observed values of Bobs is the most likely

candidate in terms of type of orientation distribution (Stri-

beck, 2007).

3.3. The Debye–Bueche correlation length determination

It has been established that approximating methods

developed for isotropic systems are also applicable to systems

with fibre symmetry (Ruland, 1978). This implies that, for

example, the Debye–Bueche method for random interfaces

(Debye & Bueche, 1949; Debye et al., 1957) can be applied to

oriented systems. The method is then to be applied to the

unprojected data in a certain direction (e.g. perpendicular to

the fibre axis), and the results are then only valid for the

nanostructure in that particular direction (Ruland, 1978). The

Debye–Bueche scattering function for a system of random

interfaces is expressed as (Debye & Bueche, 1949)

IðqÞ ¼ I0

ð1 þ q2L2
cÞ2

þ Ifl ð7Þ

where I0 is an intensity scaling factor, Lc is the Debye corre-

lation length (a characteristic size parameter related to the
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mean lengths between interfaces present in the sample) and Ifl

is a constant, modelling the scattered intensity from electron-

density fluctuations in the phases according to Ruland (1971).

If there are two distinct, non-interacting distributions of

interfaces originating from objects of considerably different

sizes (i.e. if the sample contains scatterers with a bimodal size

distribution), then the two can be considered to have separate,

independent contributions to the scattering intensity. With

relevance to our study, these two objects of considerably

different sizes could consist of (1) a structure of fibrils with

interfibrillar voids and (2) a nanoporous structure of (much

smaller) voids inside the fibrils. Under this assumption, a

‘double Debye’ function can be construed:

IðqÞ ¼ I0a

ð1 þ q2L2
c1Þ2 þ

I0b

ð1 þ q2L2
c2Þ2 þ Ifl: ð8Þ

3.4. The Porod length determination

The Porod relationship applicable for scattering from

smooth interfaces is expressed as

IðqÞ ¼ Kp

q4
þ Ifl ð9Þ

for sufficiently large q and Kp is the Porod constant, a scaling

factor proportional to the surface-to-volume ratio and the

scattering contrast. Here too, the fluctuation term Ifl has been

added (Ruland, 1971).

A size parameter Lp can be determined from a Porod fit

applied to data on an arbitrary intensity scale, through

Lp ¼ �
R1

0 IðqÞq dq

Q
: ð10Þ

To evaluate this equation, the first moment (numerator) and

the invariant (denominator) have to be determined. The

invariant is defined as (Glatter & Kratky, 1982)

Q ¼ R1
0

q2IðqÞ dq ð11Þ

and can be obtained through evaluating the invariant for the

intensity described by both the Debye function [equation (7),

without fluctuation terms as indicated by Ruland (1990)], and

the Porod function [equation (9)], bounded by the crossover

limit qco:

Zqco

0

I0q
2

ð1 þ q2L2
cÞ2

dq ¼ I0

2L2
c

arctanðLcqcoÞ �
Lcqco

L2
cq

2
co þ 1

� �
ð12Þ

and

Z1

qco

q2Kp

q4
dq ¼ Kp

qco

: ð13Þ

The total invariant Q then is

Q ¼ I0

2L2
c

arctanðLcqcoÞ �
Lcqco

L2
cq

2
co þ 1

� �
þ Kp

qco

: ð14Þ

The numerator of equation (10) is derived in a similar manner

as Q:

�

Z1

0

IðqÞq dq ¼ � � 1

2 q2
coL

3
c þ Lcð Þ þ

1

2Lc

þ Kp

2q2
co

� �
: ð15Þ

3.5. Model setup

3.5.1. Model basis. A new analysis model is built up around

a system of well oriented ellipsoidal scatterers, independently

polydisperse in both the long and short axes of the (rotational)

ellipsoids. This is a modification of the method of Helfer et al.

(2005), who modelled a system of oriented, monodisperse,

cylindrically shaped scatterers. The full description for the

scattering intensity of a system of polydisperse oriented scat-

terers is

IðqÞ ¼ Iðq;  Þ

¼ C1

R1
0

R1
0

VðR1;R2Þ2
R2�
0

R�=2

0

F2ðq;R1;R2; �Þ

� hð�Þ sin � d� d’ f ðR1Þ gðR2Þ dR1 dR2 ð16Þ
where q is the scattering vector. In the tangent plane

approximation its magnitude is q and  is the angle on the

detector (Fig. 1). � is the angle between the fibre axis and the

long axis of the ellipsoid, and ’ is the angle between the

projection of the long axis on the xy plane and the x axis. F is

the form factor of the scatterer and C1 is a scaling factor. The

diffraction geometry is graphically displayed in Fig. 1. � is the

angle between q and the main ellipsoid axis. The angles are

related through (Helfer et al., 2005)

cos � ¼ cos � sin þ sin � cos cos ’: ð17Þ
The distribution hð�Þ is the orientation distribution of the

scatterers with respect to the fibre axis, and f ðR1Þ and gðR2Þ are

the radius distributions for the ellipsoidal scatterers, one

describing the short-axis radius (R1), and the other describing

the long-axis radius of the ellipsoid (R2). The size distributions

f ðR1Þ and gðR2Þ are expressed using the log-normal probability

density function PðRÞ, commonly used to describe particle size

research papers

840 Brian R. Pauw et al. � Nanopores in PPTA J. Appl. Cryst. (2010). 43, 837–849

Figure 1
Diffraction geometry used in the model description.
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distributions and defined as (Weisstein, 2005; Crow & Shimizu,

1988)

PðRÞ ¼ 1

RSð2�Þ1=2
exp � lnðRÞ �M½ �2

2S2

� �
: ð18Þ

The parameters S and M are related to the mean � and

variance � of the distribution through

M ¼ ln
�2

ð� þ �2Þ1=2

� �
;

S ¼ ln
�

�2
þ 1

� �� �1=2

:

ð19Þ

For numerical purposes, it is more convenient to use the

orientation distribution function ~hhð�Þ, defined as

~hhð�Þ ¼ 2� sin � hð�Þ: ð20Þ
In this report, we initially assume a perfect orientation of the

scatterers, and therefore the description of the two-dimen-

sional scattering intensity simplifies to

Iðq;  Þ ¼C2

R1
0

R1
0

VðR1;R2Þ2

� F2ðq;  ;R1;R2Þ f ðR1Þ gðR2Þ dR1 dR2 ð21Þ
where C2 is a scaling factor. Note that � in the form factor has

been replaced with  , as equation (17) simplifies to

cos � ¼ sin when perfectly aligned ellipsoids are assumed

(i.e. � ¼ 0).

The form factor of a rotational ellipsoidal scatterer is

obtained as a modification of the form factor of a sphere. This

can be achieved by replacing the sphere radius R in the

Rayleigh scattering function by Rell, defined as (Pedersen,

1997; Guinier & Fournet, 1955)

Rell ¼ ðR2
1 sin2 � þ 4R2

2 cos2 �Þ1=2: ð22Þ
We then obtain for the form factor of our ellipsoidal scatterer

Fðq;  ;R1;R2Þ ¼ 3
sinðqRellÞ � qRell cosðqRellÞ

ðqRellÞ3
: ð23Þ

Note that a structure factor is not included in the scattering

function [equation (21)]. This has been done since the ellip-

soidal void structure is assumed to be non-interacting and the

individual scatterers are able to intersect. One could expect

some typical distance between voids imposed by for example

crystal sizes or fibrillar sizes, but the observed small-angle

scattering gives no indication of such characteristics. This

implies that no volume is excluded, and no structure is

imposed at higher scatterer concentrations. A structure factor

is therefore not considered.

The fitting procedure is carried out using a prototype open-

source SAXS analysis package named SAXSGUI, developed

by Dr Joensen of JJ X-ray Systems A/S in collaboration with

Rigaku and several individual contributors. The data are

linearly binned using bins containing 4 � 4 image pixels. The

q-range fit is 0.025–0.25 Å�1, and the  range extends 90� to

either side of the main axis of the scattered streak. The

minimization function is a least-squares residual function:

"2 ¼
PN

i¼1 Imodel � Imeasurementð Þ2

N � nparam

ð24Þ

where i is the datapoint index, N is the total number of data

points in the fit and nparam is the number of fitting parameters.

The intensity Imodel for each q and  value in the data is

interpolated (using a two-dimensional linear interpolation

routine) from the intensity of an equidistant q;  grid span-

ning 180� in  , which spans the q range of the data to be fitted.

The number of grid points in the  direction is set to 180 and

the number of grid points in q can be adjusted by the user.

Using 20 grid points in q is found to provide a sufficiently fine

grid.

3.5.2. Simulation setup. In order to verify the applicability

of some of the analysis methods, scattering patterns have been

numerically simulated. To achieve this, a three-dimensional

box is filled with perfectly aligned non-interacting rotational

ellipsoids, polydisperse in both the short radius and the long

radius using separate log-normal distributions (see Fig. 2, top).
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Figure 2
An example of a simulated pore system consisting of a volume filled with
perfectly oriented ellipsoids (top), and the resulting scattering pattern
computed from 100 such simulations (bottom, main ellipsoid axes
vertical). The size parameters used in the simulation are f ðR1Þ � ¼ 17:7,
f ðR1Þ � ¼ 50:4, gðR2Þ � ¼ 96:6, gðR2Þ � ¼ 7560 and a volume fraction of
0.1%. Intensity shown on a logarithmic scale.

electronic reprint



The positioning of the ellipsoids within the box is purely

random. In order to suppress edge effects (from truncated

ellipsoids) during the Fourier transform procedure, the ellip-

soids that cross the box boundaries are subject to periodic

boundary conditions. The box is divided into 3003 voxels,

Fourier transformed, and convoluted with a sinc function

(Fourier transform of a voxel) similar to the method described

by Schmidt-Rohr (2007).

The first row of parameters listed in Table 1 is used for

initial tests. The other listed values offer values for aspect ratio

tests that are used to determine the effects of aspect ratio on

the orientation distribution analysis methods. Each simulated

scattering pattern consists of the average of 100 invocations of

the simulation (i.e. the structure is regenerated and its scat-

tering pattern computed 100 times).

The obtained simulated scattering patterns (such as shown

in Fig. 2, bottom) can now be used to test the applicability of

some of the models. The scattering pattern in the example

shown in Fig. 2 shows cuspidal features, not commonly asso-

ciated with scattering from oriented ellipsoids (Ciccariello et

al., 2002). This behaviour is due to the consideration of

polydispersity in both the short axis and the long axis of the

ellipsoids, resulting in contributions from ellipsoids with a

range of aspect ratios.

3.5.3. Model adaptations. Adaptations to the model which

will be discussed below include an implementation of an

orientation distribution of the ellipsoids and the addition of

large-sized scatterers to the log-normal distributions to

approximate a bimodal distribution.

The orientation distribution has been implemented as a

rotational smearing of the modelled scattering pattern

[equation (21)] in  . This amounts to a rotation of the ellip-

soids only in the xz plane (i.e. assuming ’ ¼ 0). This has been

done to speed up the calculation of the rotationally smeared

intensity (as an additional numerical integration over ’ would

significantly increase the computational time), and yields

results that approximate the orientation distribution of the

normals of the ellipsoidal scatterers. This approximation is

valid only for small widths of the orientation distribution.

The rotational smearing is achieved in the calculation of

Imodel by applying a circular matrix shift to the q;  matrix in

the  direction. Owing to the number of grid points in  , a

shift by n ¼ 1 corresponds to a 1� rotation. Summing the thus

shifted intensity after multiplying with the orientation distri-

bution P results in intensity that is rotationally smeared in  :

IODðq;  Þ ¼
P180

n¼0

Inðq;  ÞPðnÞ: ð25Þ

Here, Inðq;  Þ is the q;  grid after a circular matrix shift of n�.
IODðq;  Þ is the scattering pattern with the orientation distri-

bution implemented.

The orientation distribution Pð	Þ is the distribution of the

normals to the scatterers, where 	 is the angle between the

normal and the direction  ¼ 0. It is implemented here as a

von Mizes distribution function (Weisstein, 2009; Evans et al.,

2000), modified for high values of 
 by P. Malchev at Teijin

Aramid. For the probability density distribution function in

degrees, we use

Pð	Þ ¼



2�

exp 
 cosð	2�=360Þ½ �
2�Jð0; 
Þ if 
 � 100




2�
exp 
 cos 	2�=360ð Þ½ � if 
> 100

8><
>: ð26Þ

where J is the Bessel function of the first kind and 
 is an

inverse measure of the width of the orientation distribution.

Fig. 3 shows an example of the scattering pattern calculated

for a system of highly elongated particles with an orientation

distribution having a 
 value of 100.

The second adaptation is the addition of large scatterers.

For some materials that will be described below, a significant

amount of scattering at low q reduces the fitting capability of

the model. This extra scattering at low q is taken into account

by the addition of a large, slightly polydisperse (to reduce

oscillatory behaviour) ellipsoid to the model. Such large

scatterers could be related to a more pronounced fibrillar

structure present in these fibres. This is implemented by

adding to the intensity obtained from the model [equation

(21)] a contribution for large scatterers with a distribution for

the short-axis radius RL1 and long-axis radius RL2, i.e.
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Table 1
Simulation parameters.

f ðR1Þ � f ðR1Þ � gðR2Þ � gðR2Þ �
Volume
fraction

Approximate
aspect ratio

17.7 50.4 96.6 7560 0.01 5.45
20 50 2 5 5 � 10�4 0.1
20 50 4 10 1 � 10�3 0.2
20 50 10 25 2.5 � 10�3 0.5
20 50 20 50 5 � 10�3 1
20 50 40 100 0.01 2
20 50 100 250 0.025 5
20 50 200 500 0.05 10
20 50 2000 5000 0.1 100

Figure 3
The effect of an orientation distribution on the scattered intensity from
elongated ellipsoids, as computed with the fitting model with ellipsoid
distribution parameters f ðR1Þ � ¼ 25, f ðR1Þ � ¼ 50, gðR2Þ � ¼ 1000,
gðR2Þ � ¼ 1000 and a von Mizes 
 of 100 (which has an FWHM of 13.6�).
Intensity shown on a logarithmic scale.
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IadaptedðqÞ ¼ I½q; f ðR1Þ; gðR2Þ� þ C3I½q; f ðRL1Þ; gðRL2Þ� ð27Þ
where C3 is the scaling factor for the intensity from the large

scatterers. The distribution for the large scatterers is linked to

the aspect ratio � through

gðRL2Þ ¼ �f ðRL1Þ ð28Þ
and the width of the distribution is fixed to small values

(sufficiently large to dampen oscillatory behaviour), so that

only the short-axis radius RL1, aspect ratio � and scaling factor

C3 are added as fitting parameters.

The third adaptation combines both previous adaptations

into a single model.

4. Results and discussion

4.1. Classical and new data analysis models applied to a

measurement of Twaron 1000

4.1.1. Twaron 1000 measurement. The applicability of the

methods was tested on a 30 min measurement of Twaron 1000

(the two-dimensional scattering pattern of this sample is

shown in logarithmic and linear intensity scale in Fig. 11).

4.1.2. Effler invariant method. Analysis of the measured

scattering pattern using the Effler invariant method in the q

range 0.03–0.2 Å�1 results in an orientation parameter value

of hsin2  i = 0.899 (3). This value is the average over all four

quadrants. The corresponding Hermans orientation factor FH

is 0:80.

An analysis of the simulated data shown in Fig. 2 of poly-

disperse, perfectly aligned ellipsoids with a relatively low

aspect ratio results in an orientation parameter value of

hsin2  i = 0.881 (9). This result for a perfectly aligned system

shows that the Effler invariant method is sensitive to the

aspect ratio of the scatterers, which affects the intensity in the

directions off-normal to the scatterers. This effect may be

investigated more closely, i.e. by plotting the hsin2  i value as a

function of mean aspect ratio for several simulations of

perfectly oriented, polydisperse ellipsoidal scatterers,

resulting in the diagram as shown in Fig. 4. The point at an

aspect ratio of 1 indicates a value of hsin2  i ¼ 0:56. Note that

separate size distributions were used for the length and the

width, and that therefore the aspect ratio in Fig. 4 is the

average of all scatterers.

From this figure, and given the experimental value of

hsin2  i ¼ 0:899, we find that the mean aspect ratio of the

scatterers in the sample must lie above �5. If the sample were

to contain scatterers with much larger aspect ratios, the

introduction of an orientation distribution of these scatterers

will lower the hsin2  i value to reach the found value of 0.899.

Thus, through the analysis presented above, it has been

established that the sample contains well oriented scatterers,

with a mean aspect ratio larger than 5.

4.1.3. Ruland streak method. For the application of the

Ruland streak method, the q space (q = 0.01–0.25 Å�1) has

been divided into 40 azimuthal sections (i.e. with a width of

�q ¼ 0:006 Å�1). For each section, the integral breadth has

been determined using all data points within that section. The

result is shown as the blue dotted line in Fig. 5.

The streak methods, based on both Gaussian and Lorent-

zian distributions, fit poorly to the data. The best fitting profile

is that of a Lorentzian distribution of the scatterer normals.

The integral breadth B that is obtained is a value that

approaches the integral breadth of the azimuthal curve of the

200 reflection of the PPTA crystallites (found to be 14.8� for

Twaron 1000). The length that is determined through the

streak method (5.9 or 8.0 Å) appears unrealistically small, as

will become apparent in the next paragraphs. Since the fit is

also relatively poor, it cannot be considered to be accurate.

Wang et al. (1993) have shown a successful application of

the streak method applied to critical-point-dried (CPD) as-

spun aramid fibre. However, our results indicate that the

streak method is not exceptionally suited for the analysis of

the nanostructure of the aramid fibres studied here, which is

also supported by the absence of the ‘butterfly-like’ intensity

map often encountered in SAXS data subjected to this

analysis. The reason for the poor applicability is that the

broadening at low angles can no longer be solely ascribed to

the length of the scatterer, but also has contributions from the
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Figure 4
hsin2  i determined via the Effler invariant method with parameters
given in Table 1, versus the mean aspect ratio for scattering patterns
obtained from simulations of perfectly oriented, polydisperse ellipsoidal
scatterers. The dashed line indicates the experimentally found value for
Twaron 1000, the solid line is a Bezier curve drawn to guide the eye.

Figure 5
Streak fits to the scattering pattern obtained (at MAX-lab) from a bundle
of Twaron 1000 filaments.
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sides of the ellipsoids. Additionally, a contribution to the

intensity from a separate system of scatterers with a separate

orientation distribution (such as highly oriented fibrillar

scattering) may affect this determination.

4.1.4. Debye–Bueche analysis. The results of the Debye–

Bueche analysis show that the Debye–Bueche model fits

reasonably well to the data (shown in Fig. 6) for Twaron 1000.

Above q ¼ 0:09 Å�1, however, the model fails to describe the

data. For the as-spun material, the Debye fit is less satisfactory

(cf. Fig. 7).

Upon closer investigation of the intensity curve of the as-

spun sample (Fig. 7) two slopes can be distinguished in the

Debye plot, indicating that we may have interface distribu-

tions centred around two distinct sizes. This is where the

previously mentioned ‘double Debye’ relationship comes into

play. By adding intensity from a second interface distribution

function, some of the sizes present may be determined. The

result of this is depicted in Fig. 8. The difference in appearance

of the intensity in the ‘Debye’ plots is due to a difference in Ifl,

which has converged to a (too) large value in the fit with the

single Debye function (Ifl is determined separately when

fitting the Debye and Porod functions). We now obtain two

correlation lengths, one very large (and most likely unreliable

owing to the lack of sufficient data at very low q) and one

ordinary size correlation length.

Application of the Debye–Bueche fitting model to the

simulated data (shown in Fig. 2) results in a fit similar to that of

Twaron 1000, resulting in a correlation length Lc of 11.9 Å.

This correlation length is related to the void size Lv through

Lv ¼ Lcð1 � �Þ�1, where � is the volume fraction of voids, and

therefore the correlation length approaches the void size for

low volume fractions. This is very close to the mode (also

known as the maximum likelihood estimator) of the radius

distribution that was simulated (these distributions are iden-

tical to those shown at the end of x4.3; the mode of the short-

axis radius is about R ’ 14 Å). When we analyse the intensity

scattered in the meridional direction (i.e. along the fibre axis),

a correlation length of 30.8 Å is obtained. This, again,

approaches the mode of the distribution of the long-axis

radius of the scatterer, which is at R ’ 40.

These results show evidence of the applicability of the

Debye–Bueche method, returning a value somewhat below

the mode of the size distribution. Furthermore, the results for

the as-spun material indicate that a standard unimodal

correlation function fit is severely affected by large-sized

scatterers. The application of a model based on a ‘double

Debye’-type bimodal correlation function reveals a significant

contribution from large scatterers.

4.1.5. Porod analysis. The Porod analysis for Twaron 1000 is

shown in Fig. 6. The fit is less than reliable, as is apparent from

the Porod plot (the data should have a linear region at high q).

One possible explanation is that the Porod region has not yet

been reached in these measurements. Alternatively, there may

be a change in the slope, due to graded interfaces (Koberstein

et al., 1980), surface roughness (Tang et al., 1986), beginning

wide-angle diffraction peaks (Stribeck, 2007) or other Porod
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Figure 7
Results from the Debye–Bueche and Porod analysis, as well as the
associated Debye and Porod plots applied to the equatorial intensity of
as-spun Twaron (a pie section with a width in  of 1�).

Figure 8
Results from the bimodal Debye–Bueche analysis, as well as the
associated Debye and Porod plots applied to the equatorial intensity of
as-spun Twaron (a pie section with a width in  of 1�).

Figure 6
Results from the Debye–Bueche and Porod analysis, as well as the
associated Debye and Porod plots applied to the equatorial intensity of
Twaron 1000 (a pie section with a width in  of 1�).
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slope modifications (Diez & Sobry, 1993; Ciccariello, 1993;

Ruland, 1971).

The Porod method appears to work a little better for the as-

spun material, where before the intensity drop at

q2 ¼ 0:03 Å�2 the data are described rather well by the model

(cf. Fig. 7). The value of the Porod length (Lp = 28 Å) resulting

from the Twaron 1000 fit does not compare well with the

correlation length obtained from the Debye function

(Lc = 13 Å), whereas for as-spun Twaron this Porod length

(of Lp = 35 Å) does approach the Debye correlation length (of

Lc = 37 Å). Since the Porod length value is heavily dependent

on the extrapolation of the intensity to q ¼ 0 and q ¼ 1, the

extrapolation method may be equally at fault. Values for the

surface-to-volume ratio have not been determined, as they

assume isotropic scatterer orientation.

4.2. Applicability of classical analyses

The results so far indicate that the applicability of the

Ruland streak method and the Porod method for the analysis

of SAXS data of the investigated aramid yarns is limited.

Other classical methods, i.e. the Debye–Bueche method and

the Effler invariant method, appear to

work well, although for the latter

method the aspect ratio of the scat-

terers must be sufficiently large. In x4.3,

the results of our new data analysis

method will be presented, which makes

use of the full two-dimensional scat-

tering pattern. This method not only

allows the extraction of average size

parameters from the scattering pattern,

but also allows the determination of the

complete size distributions of the scat-

terers in both lateral and longitudinal

directions.

4.3. Full two-dimensional data analysis

model

Fitting the new model to the Twaron

1000 measurement works very well

when done within a q range of 0.025–

0.25 Å�1 (cf. Fig. 9). The parameters

included in the fit are C2 (a scaling

factor), the radius distribution para-

meters f ðR1Þ �, f ðR1Þ �, gðR2Þ � and

gðR2Þ �, a background parameter and a

sample misalignment parameter  offset.

This fit results in size distributions with

parameters as shown in Table 2

(‘Original model’), indicating the

presence of a large variance of the

distributions of sizes, in accordance

with the conclusions of Wang et al.

(1993). The residuals are small but show

systematic deviations. This indicates

that the model, whilst good, leaves
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Figure 9
Intensity plot of the Twaron 1000 measurement, compared with the
intensity based on the polydisperse ellipsoid model, leaving a small
amount of residual intensity. Residuals are shown on a vertical scale 20
times that of the data.

Figure 10
Table of residuals for two modifications of the fit. For Twaron 1000, the best adaptation is the
inclusion of an orientation distribution, whereas for as-spun Twaron, additional (large) scatterers
improve the fit considerably. Residuals are shown on a vertical scale 20 times that of the data.
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some intensity unaccounted for. This intensity may be partly

due to the shape, orientation and size distribution assump-

tions, which will be addressed shortly.

For the precursor material, i.e. the as-spun (AS) Twaron, the

fit of the new data analysis model is not satisfactory. Much

residual intensity remains, particularly at higher q (see Fig. 10).

As indicated above, when the classical models were discussed,

the scattering at low q in the AS Twaron scattering pattern

shows a contribution from large scatterers. Thus, our new data

analysis model fails here, since only a log-normal distribution

is considered and not a bimodal distribution.

Given the residuals for both Twaron 1000 and AS Twaron, it

has become necessary to address the causes of the discrepancy.

Two adaptations of the model are discussed here, which are

the addition of a large scatterer to take the low-q scattering

into account, and the addition of an orientation distribution to

test the assumption of perfectly aligned ellipsoids. Finally, the

inclusion of both adaptations in a single model is discussed.

The numerical results from the fitting procedure for various

models are given in Table 2. The squared sum of residuals (in

arbitrary units) is also given to facilitate comparisons. The

residuals are graphically displayed in Fig. 10, so that

systematic deviations from the model can be shown.

The accuracy of the resulting parameters can be estimated

through calculation of the coefficients of variance. These have

been determined from measurements recorded on the DTU

Risø rotating-anode-based SAXS instrument. The coefficients

of variance are given in % in Table 3 and are shown to be small

even for a laboratory source; a good characterization of the

material can therefore also be obtained from measurements

obtained from a laboratory source. One exception is the

coefficient of variance of the width of the radius distribution of

the model modified with an additional large scatterer, which is

11.5%. This is likely due to the additional scattering from the

large object.

The results in Table 2 and Fig. 10 show that for Twaron 1000

the residuals are reduced slightly when an additional scatterer

is introduced, but systematic deviations remain. Considering a

simple (single-parameter) orientation distribution, however,

reduces most of the remaining residuals from the original plot,

and has a more drastic effect on the squared sum of residuals.

The orientation distribution width has an FWHM of

approximately 13.4� around its mean. These results clearly

indicate that the fit to the data can be improved by considering

an orientation distribution, and the resulting modelled inten-

sity now more closely follows the scattering pattern as shown

in Fig. 11.

The results for AS Twaron, however, tell a different story.

There, the inclusion of an orientation distribution results in a

narrow width of the orientation distribution (high value of 
),

slightly reducing the sum of squared residuals. A much greater

improvement, however, is achieved when large-sized scat-

terers are introduced in the model. This deviation from the

log-normal distribution indicates that there is a bimodal

distribution present in these fibres, as previously indicated

with the bimodal Debye–Bueche model. The sizes that are

now obtained (cf. Table 2) for the nanopore distributions are

significantly different from those obtained using the unmodi-

fied model. This shows that substantial errors in size estimates
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Table 3
Coefficients of variance for the model parameters in %.

Original model.

Sample
f ðR1Þ
CV�

f ðR1Þ
CV�

gðR2Þ
CV�

gðR2Þ
CV�

Twaron 1000 2.7 2.8 1.4 4.5
AS Twaron 2.6 7.8 2.9 12.2

Model with orientation distribution.

Sample
f ðR1Þ
CV�

f ðR1Þ
CV�

gðR2Þ
CV�

gðR2Þ
CV� CV


Twaron 1000 3.7 2.4 1.3 5.5 7.1

Model with additional large scatterers.

Sample
f ðR1Þ
CV�

f ðR1Þ
CV�

gðR2Þ
CV�

gðR2Þ
CV�

CV
RL1 CV�

AS Twaron 1.9 11.5 2.0 5.9 0.37 7.6

Model with orientation distribution and additional large scatterers.

Sample
f ðR1Þ
CV�

f ðR1Þ
CV�

gðR2Þ
CV�

gðR2Þ
CV�

CV
RL1 CV


Twaron 1000 43 22 50 1.6 5.8 7.9
AS Twaron 1.8 9.3 1.1 1.5 1.8 24

Table 2
Fitting results (size parameters are given in Å).

Original model.

Sample
f ðR1Þ
� (mode)

f ðR1Þ
�

gðR2Þ
� (mode)

gðR2Þ
� "2

Twaron 1000 18.3 (15.1) 47.0 101 (45.9) 7060 189
AS Twaron 22.9 (12.8) 249 117 (16.0) 3.79 � 104 132

Model with additional large scatterers.

Sample
f ðR1Þ
� (mode)

f ðR1Þ
�

gðR2Þ
� (mode)

gðR2Þ
� RL1 � "2

Twaron 1000 4.31 (0.66) 46.6 77.4 (52.7) 1750 36 8.22 118
AS Twaron 12.4 (9.00) 36.6 57.7 (26.2) 2310 121 9.75 60

Model with orientation distribution.

Sample
f ðR1Þ
� (mode)

f ðR1Þ
�

gðR2Þ
� (mode)

gðR2Þ
� 
 "2

Twaron 1000 15.0 (11.6) 42.1 93.5 (17.3) 1.82 � 104 103 87.6
AS Twaron 18.8 (11.8) 130 97.7 (4.91) 6.05 � 104 154 130

Model with orientation distribution and additional large scatterers.

Sample
f ðR1Þ
� (mode)

f ðR1Þ
�

gðR2Þ
� (mode)

gðR2Þ
� 
 RL1 "2

Twaron 1000 15.2 (11.9) 41.0 93.4 (19.0) 1.69 � 104 108 137 87.5
AS Twaron 11.9 (8.97) 29.4 55.0 (28.6) 1.69 � 103 1060 131 58.0
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can be made if only a single model is used for analysis of both

types of fibres, leading to equally erroneous conclusions.

Other results, published elsewhere, show a high degree of

orientation of large scatterers present in these fibres (Pauw et

al., 2010), much more perfectly aligned than the orientation

distribution found for the small scatterers here. This supports

the hypothesis that there are separate distributions of scat-

terers present, one representing (well oriented) fibrillar scat-

tering, and one originating from a void structure which has

been characterized here. Results by Grubb et al. (1991) also

support the notion of a bimodal distribution. They suggested

that differently sized scatterers may be present in the core and

shell of the PPTA material. Using on-axis microbeam

diffraction Davies et al. (2008) also noted a difference in the

small-angle scattering patterns originating from the shell of

the material as compared to the core, concluding that differ-

ently shaped scatterers are present in the shell and the core of

the material.

Finally, a model can be construed containing both adapta-

tions, the results of which may be better suited for comparison

of the nanostructural differences between the two different

fibre types. In this model, in order to keep the number of

fitting parameters to a minimum, the sample misalignment

parameter  offset and the large scatterer aspect ratio assume

values obtained from the previous model fits and are fixed.

With this, the total number of fitting parameters is limited to

nine. The results of the application of this model show that the

residuals approach those of the models with a single adapta-

tion, and the resulting parameters equally agree. The drasti-

cally increased coefficients of variance (CV) for Twaron 1000,

however, indicate that the combination of the adaptations in a

single model may result in a more unstable model, and is

therefore less suited (especially for measurements obtained

using laboratory sources). Application of the combined model

to AS Twaron shows that the orientation distribution is very

narrow. The models with separate adaptations should there-

fore be the preferred method of fitting to keep the number of

fitted parameters to a minimum, to ensure a stable model that

produces reliable results.

From the results for as-spun and heat-treated Twaron

(Twaron 1000), some conclusions may be drawn on the

changes in internal structure upon heat treatment. To draw

these conclusions, the parameters obtained for Twaron 1000

using the model with the orientation distribution are

compared with the parameters obtained for AS Twaron using

the model with the additional large scatterers. While the

results for the fibres from the combined model agree with the

results from the previous two, the large coefficient of variance

implies that these values are less reli-

able for the model combining large

scatterers as well as an orientation

distribution. The changes in the pore

structure after heat treatment are

significant, as can be concluded from

Fig. 12 and Table 2. On the left-hand

side of Fig. 12 the size distributions are

visualized as the ellipsoids they repre-

sent. The mode has been plotted as the

thick solid line, the mean as the dashed

line and the 90% confidence interval as

the shaded area. From this figure, it is

clear that the short-axis radius distri-

bution of the ellipsoids is rather narrow,

whereas there is a large variance in the

long-axis radius of the scatterers.

The mean lateral pore radius

increases through heat treatment from

12.4 to 15.0 Å. The change in the mode

of the distribution from 9.00 to 11.6 Å is

in good agreement with the change in

correlation lengths obtained from the

Debye–Bueche method of 8.35 to

12.9 Å. The mode of the longitudinal

size distribution of the scatterers

(Fig. 12) shifts downward from 26.2 to

17.3 Å, but the mean longitudinal scat-

terer radius increases from 57.7 to

93.5 Å as a result of the significantly

larger tail of the distribution. The �
parameter of especially the longitudinal

distribution increases significantly after
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Figure 11
Side-by-side comparison of the scattering pattern (left-hand side) obtained from a bundle of Twaron
1000 filaments mounted vertically and the scattering pattern from the fitting model modified with an
orientation distribution (right-hand side). Intensity shown on a logarithmic scale (top) and on a
linear scale (bottom).
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heat treatment. The additional large scatterer contribution

required to model the scattering intensity from AS Twaron is

no longer required for Twaron 1000, indicating that the heat

treatment makes the contribution from the large scatterers

less prominent.

These findings are in agreement with measurements

obtained using a slit-collimated Kratky camera (Klop, 2001),

where it was concluded that the heat treatment causes the

small voids to be sintered, shifting the average size of the

pores upward. This sintering closes the gaps between the

fibrils, effecting the shift of the fibrillar scattering to q angles

beyond the resolution of the SAXS instrument (i.e. the scat-

tered intensity disappears below the beamstop). This then

reduces the contribution of the large scatterers to the scat-

tering pattern. The overall length of the scatterers increases,

just like the � parameter of the distribution. The sintering may

well be linked to increases in crystallite sizes upon heat

treatment (Jackson et al., 1994). Lastly, the increase in signif-

icance of the orientation distribution of the void structure in

Twaron 1000 is likely to be related to the increase in promi-

nence of the small void contribution rather than to a real

increase in void disorientation, as an increase of crystallite

orientation has been observed with more stringent heat

treatments (Krause et al., 1989; Rao et al., 2001a).

5. Conclusions

The classical analysis methods (the Effler invariant method

and the Ruland streak method) for the determination of the

orientation distribution of scatterers in aramid fibres are

insufficient for the determination of the degree of orientation

for these scatterers. The application of the analysis models to

simulated data and real data supports the notion that the main

issue is the relatively low aspect ratio of the scatterers. The low

aspect ratio causes off-axis contributions to the intensity that

are interpreted as originating from the orientation distribu-

tion, whilst they are solely due to the scattering by the (near)

perfectly aligned scatterer. The determination of the degree of

alignment through the Effler invariant method is shown to be

highly affected when the aspect ratio of the particles

approaches unity, and thus this method can only provide

information on either aspect ratio or the degree of

alignment.

The analysis of the characteristic length scales of the scat-

terers present shows that the application of the Debye–

Bueche analysis model works. The resulting correlation length

(approximating the void size) can be identified as the mode of

the radius distribution of the scatterers in that particular

direction. For samples with two distinctly different-sized

scatterers, a ‘double Debye’ bimodal function can be

construed.

Application of the nano-ellipsoid model presented in this

paper shows that the assumptions made are reasonable for

describing most of the intensity found in the scattering

patterns. The nano-ellipsoid model is based on a system of

ellipsoidal scatterers that are perfectly oriented with respect to

the fibre axis. It is assumed that the size distributions of these

scatterers can be described by log-normal distributions.

Furthermore, the scatterers are assumed to be non-interacting,

implying that they are allowed to intersect.

Adaptations of the model improve the obtained fits and

may significantly affect the size parameters obtained. One

adaptation required for the modelling of the scattering pattern

of the as-spun aramid material is that a large-sized scatterer

should be included. A second adaptation that was employed

for analysis of the scattering pattern of Twaron 1000 is the

introduction of an (in-plane) orientation distribution.

The application of the nano-ellipsoid model to the aramid

yarn samples shows that the heat treatment effects an increase

in overall void size and distribution widths, both laterally as

well as longitudinally, suggesting that the smaller voids are

sintered away during the heat treatment. The interfaces

between fibrils similarly disappear, making the fibrillar struc-

ture much larger. This then causes a shift of the large scat-

tering contribution seen in AS Twaron to below the detection

limits of the instrument.
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Figure 12
The radius distributions of AS Twaron and Twaron 1000 shown as
ellipsoids (left) indicating the maximum likelihood estimator (solid line),
mean (dashed line) and 90% confidence interval (shaded areas) of the
probability curves shown on the right.
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